TRMEMANA

Schenatic Dagans

TECHNICAL SPECIFICATIONS

Dimensions:	(WxHxD)	$483 \times 88 \times 445 \mathrm{~mm}$ (2U)
Weight:		16 Kg
Power Requirements:	(230Vac $\pm 15 \% 50 / 60 \mathrm{~Hz}$)	1000VA
	(115Vac $\pm 15 \% 50 / 60 \mathrm{~Hz}$)	1000VA
Output Power:	(4Ω stereo/parallel)	2×500 Watts
	(8Ω stereo/parallel)	2×350 Watts
	(8Ω bridge)	1000Watts
	(16 Ω bridge)	700Watts
Max. Undistorted Out:	(4Ω stereo/parallel)	126 Vpp
	(8Ω stereo/parallel)	149 Vpp
	(8Ω bridge)	250Vpp
Input Sensitivity:	(constant sensitivity)	0.775 Vrms (0dB)
	(constant gain)	$2.25 \mathrm{Vrms}(+9.2 \mathrm{~dB})$
Input Impedance:	(balanced)	$30 \mathrm{~K} \Omega$
	(unbalanced)	$15 \mathrm{~K} \Omega$
Voltage Gain:	(constant sensitivity)	$35 \pm 0.5 \mathrm{~dB}$
	(constant gain)	$26 \pm 0.5 \mathrm{~dB}$
Slew Rate:		$25 \mathrm{~V} / \mu \mathrm{S}$
Damping Factor:	(4 Ω stereo/parallel)	>400
	(8Ω stereo/parallel)	>800
Frequency Response	(-0.2dB)	$20 \mathrm{~Hz} \div 20 \mathrm{KHz}$
at Full Power:	(-3dB)	$10 \mathrm{~Hz} \div 60 \mathrm{KHz}$
IMD:	(SMPTE 60Hz/7KHz 4:1)	<0.1\%
THD:	(THD + N)	<0.1\%
S/N Ratio:	(unweighted)	$>95 \mathrm{~dB}$
Crosstalk:	(1KHz)	>70dB

TEST PROCEDURES \& ADJUSTMENTS

Precaution

Δ To prevent short circuit during any test, the oscilloscope must be EARTH insulated, this occurs because some test require to connect its probe to the amplifier output, non-compliance may cause damages to oscilloscope inputs circuitry.
\measuredangle Before removing or installing any modules and connectors, disconnect the amplifier from AC MAINS and measure the DC supply voltages across each of the power suppliy capacitors. If your measurement on any of the caps is greater than 10 Vdc , connect a 100Ω 100W resistor across the applicable caps to discharge them for your safety. Remember to remove the discharge resistor immediately after discharging caps. Do not power up the amplifier with the discharge resistor connected.
\Rightarrow Read these notes entirely before proceeding to any operation. These notes are not comprehensive of all damages that possibly occur, but includes some specifically advices, checks and adjustments relative to this amplifier.

Remarks

The output coupled transistors TR6-TR11 (MJ15022/B) and TR16-TR22 (MJ15023/B) are factory selected on $\mathrm{V}_{\text {BE }}$ and $\mathrm{V}_{\text {breakdown }}\left(\mathrm{I}_{\text {ECoo }}-6.6 \mathrm{~mA}\right.$ at
 The selection is marked by a red digit (from 0 to B) representative of $V_{B E}$ forward voltage categories, these are subdivided in 12 steps of 30 mV each.
Only selected transistors must be used when replacing TR6-TR11 or TR16-TR22 and every coupled transistors must have the same digit.
\Rightarrow The power supply utilizes a dual bipolar DC rail configuration with low and high voltages; one positive and one negative low rail ($+/-\mathrm{Vcc} 1$) and one positive and one negative high rail ($+/-\mathrm{Vcc} 2$)

Visual Check

\Rightarrow Use compressed air to clear dust in the amplifier chassis
\Rightarrow Before proceed to supply the amplifier check visually the internal assem bly, if appears an evident damage find the most possible reasons that cause it.
$>$ Check the wiring cables for possible interruptions or shorts.
\Rightarrow If the damage has burnt a printed circuit board don't try to repair it, re place with a new one.

Test Instrument

Audio Generator

\Rightarrow Dual Trace Oscilloscope
\Rightarrow Digital Multimeter
$\Rightarrow 2 \Omega 2000 \mathrm{~W}, 4 \Omega 1000 \mathrm{~W}, 8 \Omega 1000 \mathrm{~W}, 100 \Omega 100 \mathrm{~W}$ resistors
Variac
\Rightarrow Temperature Meter

Setup

\Rightarrow Connect the Variac between the PROTECTION board and the TF1 and TF2 transformers and set it at zero voltage.
\Rightarrow Set the amplifier in STEREO MODE and turn full clockwise the LEVEL potentiometers
\Rightarrow Connect the audio generator to the channel inputs and set it to 1 KHz $775 \mathrm{mV}_{\text {Rms }}$ (0 dB) sinusoidal signal.
\Rightarrow Insert the temperature meter through the IC1 interstice located at centre of heatsink.
\Rightarrow The procedures that follow must be executed subsequently in the order specified.

Supply Check

\diamond Remove the transformer secondary fuses (located on FUSE board), set the Variac to the nominal mains voltage, check with the Multimeter the phase opposition between the secondaries of the two transformers (F1-F2,F3-F4), if not, verify the primary connections (T1 \div T4 on Protections Board).
\Rightarrow Verify the AC supply voltages: F1-F2 $2=72 \pm 2 \mathrm{Vac} \quad \mathrm{F} 3-\mathrm{F} 4=128 \pm 3 \mathrm{Vac}$.

Re-set the Variac at zero voltage, turn off the amplifier and put the fuses back on its holders.
$>$ Connect the oscilloscope probes $\mathrm{CH} 1 / 2$ to the channel outputs, set both to $20 \mathrm{~V} / \mathrm{div}$. $200 \mu \mathrm{~S} / \mathrm{div}$.
\leadsto Set up the Variac slowly monitoring the Outputs with the oscilloscope $\mathrm{CH} 1 / 2$ connected, it should display the sinusoidal input signal amplified with no distortions, if a distortion occur check the Driver and the Power Boards as suggested in the ADVICES section.
\triangleleft If the protection trips, turn off the amplifier, wait some minutes and dis connect the supplies from the outputs modules (CN1-CN2-CN7-CN8 on POWER boards), continue to check the supplies.
\leadsto CAUTION: Before re-connecting the output modules to the supplies, you must have the capacitors discharged for your safety: connect a 100Ω 100W resistor across the caps and remove the resistor just after they are discharged.
Finally verify the DC supplies on Supply Board:
CN6 (+Vcc2) $=+89.5 \pm 2 \mathrm{Vdc}$
CN8 (+ Vcc1) $=+50 \pm 1.5 \mathrm{Vd}$
CN7 (-Vcc1) $\quad=-50 \pm 1.5 \mathrm{Vdc}$
CN2 (-Vcc2) $=-89.5 \pm 2 \mathrm{Vdc}$
on Protections Board:
CN2 pin3 $=+27 \pm 1 \mathrm{Vdc}$
CN3 pin3 $=-27 \pm 1 \mathrm{Vdc}$
CN1 pin4-5-6 $=+13.8 \pm 1 \mathrm{Vdc}$
CN1 pin1-2-3
$=-13.8 \pm 1 \mathrm{Vdc}$
CN1 pin1-2-3 $=-13.8 \pm 1 \mathrm{Vdc}$
\Rightarrow If one or more voltages don't correspond, check the rectifiers, capacitors and transformers disconnecting them from circuitry, refer to schematics.

Channels Check

\triangleright The channel A is facing the front and channel B the rear of the chassis
\lesssim These procedures are intended for one channel at a time, repeat these operation for the other channel
\lesssim Verify, with the Multimeter, the insulation between the heatsink and the transistors collectors.
SETUP:
Connect the CH1 scope GND clip to CN5 (GND terminal)
Connect the CH1 probe tip to CN6 (AMP output).
Connect the CH2 probe tip to D2 cathode on POWER board Set the LEVEL potentiometers full clockwise.
The load resistor is disconnected.
\Rightarrow INITIAL TEST:
Increase slowly the Variac. The channel output signals must be symmetri cal rase she GND without visible distortion and oscillation as shown in Fig 1 Trace A. If there is a distortion read the section ADVICES and proceed to check the other channel.
Verify that, when the heatsink temperature is less $50^{\circ} \mathrm{C}$, the cooling fan

voltage must be between 12 and 16 V .

\diamond HIGH RAIL CHECK

When the output signal (Positive half-wave) is less than 44 Vp the voltage on D2 cathode must remain constant at 50 V , when the output signal exceeds 44 V p the voltage must follow the output signal with 6 V offset (see Fig. 1 Trace B), to check the negative high rail connect the probe to D18 anode (see Fig. 1 Trace C)
Connect the 4Ω 1000W load on the output and repeat the INITIAL and HIGH RAIL checks.
heck the signal clipping, it must occur at $130 \pm 5 \mathrm{Vpp}$ (see Fig. 2 Trace $A B C$).

Fig. 2

Trace B (20V/div.)

Trace A (20V/div.)
Trace C (20V/div.)

\Rightarrow SIGNAL/CLIP SENSOR CHECK

Set the LEVEL pot to minimum, set the scope timebase at $1 \mathrm{~V} / \mathrm{div}$. $200 \mu \mathrm{~S}$ div., then increase the level and check the SIGNAL/CLIP led activity: it must turn on (green light) when the amplifier output is higher than 5 Vpp . Set the scope at $50 \mathrm{~V} / \mathrm{div}$. and increase the level, check the led: it must change from green to red colour when the amplifier output signal clip.
\checkmark CURRENT AND SHORT CIRCUIT SENSOR CHECK:
Set the CH 2 sensitivity to $0.5 \mathrm{~V} /$ div., connect the scope CH 1 , GND clip at CN6 (AMP output) and the probe tip at CN5 (GND terminal), CH2 probe tip alternatively on TR6, TR11 (NPN) and TR16, TR22 (PNP) emitters. set the generator to have approx. 1Vp on the emitters: their difference must be less than 10% one each other (see Fig. 3 Trace A). The NPN or PNP transistors out of tolerance must be replaced with a new selected pair.
Connect a $2 \Omega 2000 \mathrm{~W}$ load. Connect the CH1 probe tip on TR16 emitter and the CH2 probe tip on TR11 emitter. Increase the input signal, the output current limiter must keep the emitter voltages (both half channel) at
O $\quad 1.2 \mathrm{Vp}$ approx. (see Fig. 3 Trace B).
Temporarily short the amplifier output: the current limiter must keep the emitter voltages (both half channel) at 0.7 Vp (see Fig. 3 Trace C)
Fig. 3

Trace A (0.5V/div.)

Trace B (0.5V/div.)

Trace C (0.5V/div.)
\Rightarrow COOLING FAN \& PROTECTION CHECK:
Short circuit pins 11 and 12 of OC1 on Driver board, the fan must run at max. speed ($20 \div 23 \mathrm{~V}$ dc on its tips)
Short circuit pins 9 and 10 of OC1 on the same board, the PROTECT led must turn on immediately, the fan must run at max. speed. The PROTEC led of the other channel must also turn on after 2 Sec . and the relay must
disconnect the transformers from the mains.
Remove the short circuit, after 3 Sec . both PROTECT leds must turn off and the relay must re-connect the transformers to the mains.
Temporarily short the emitter and the collector of TR7 (Driver board) the PROTECT led must turn on and the relay must disconnect the transform ers from the mains
Turn off the amplifier to reset it, wait a minute to let the supply caps discharged
\triangle OFFSET SENSOR CHECK:
Set the Variac to zero voltage output, disconnect the amplifier load and the supply connection to the Power board (CN1,2,7,8), turn on the amplifier, connect temporarily (by means of a suitable conductor wire) CN6 to +15 Vdc , the PROTECT led must turn on immediately; the fan must run at maximum speed)
Reset the protection turning off the amplifier, turn it on again, connect temporarily (by means of a suitable conductor wire) CN6 to -15Vdc, the led PROTECT must turn on again.
\Rightarrow SOA ADJUSTMENT:
Set the scope sensitivity at 5V/div. (both channels) and connect the CH 1 probe on D12 cathode and the CH2 probe on D11 anode on Driver board check the voltage across D12 and D11 zener diodes: it must be $14.8 \pm 0.1 \mathrm{~V}$; increasing 10 dB the generator level this voltage does not decrease more than 0.5 V .
Connect the $4 \Omega 1000 \mathrm{~W}$ load, set the scope sensitivity at $2 \mathrm{~V} / \mathrm{div}$. and connect the CH1 probe tip at R43 side CN3 and the CH2 probe tip at R36 side CN2. Decrease the signal level until two sinusoid appear on the scope as shown in Fig 4 Trace AB.

Fig. 4

Trace A (2V/div.)

Trace $\mathrm{C}(20 \mathrm{~V} /$ div.)
(Amplifier Output) (Amplifier Output)

Trace B (2V/div.)
Their max. amplitude must be 5.5 Vp (the outer) and 1.5 Vp (the inner) as shown in Fig 5 Trace A, B; increasing a bit the generator signal, the inne sinusoid must produce spikes on its peaks as shown in Fig 5 Trace A,B Connect the $2 \Omega 1000 \mathrm{~W}$ load, set the scope sensitivity at $1 \mathrm{~V} / \mathrm{div}$. (both channels) and connect its probes to the collectors of TR8 (CH1) and TR11 (CH2) on Driver Board.
Fig. 5

Trace A (2V/div.)

Trace C (20V/div.)
(Amplifier Output)

Trace B (2V/div.)
Disconnect the fan; wait until the temperature is $90^{\circ} \mathrm{C}$ (require some minutes) then decrease the input to zero.
Adjust the trimmers R20 and R40, until the scope traces go respectively at -2.2 Vdc and +2.3 Vdc ; turn on the cooling fan and wait until the temperature goes down to $80^{\circ} \mathrm{C}$; then turn it off.

Reconnect the $4 \Omega 1000 \mathrm{~W}$ load, adjust the level for the maximum displacement of the scope tracks toward the centre of the scope screen (3dB approx.); the SOA control circuit (Protect led light on) will start at $90 \pm 2^{\circ} \mathrm{C}$.
Reconnect the cooling fan and check with the Multimeter its supply voltage: it must be 20 V or more (max speed)
age: it must be $70^{\circ} \mathrm{C}$ heatsink temperature, short circuit the amplifier output and check the scope traces: they must displace 1V toward the centre of the screen, respect to the previous position with 4Ω load.
Remove the short and decrease the input level to zero. The temperature will decrease: at $65 . .75^{\circ} \mathrm{C}$ the speed of the cooling fan must change from max to min speed. In case of a fan misbehaviour try to replace the D10 zener diode: if speed change at $75^{\circ} \mathrm{C}$ or more replace with a lower voltage zener diode, if speed change at $60^{\circ} \mathrm{C}$ or less replace with a higher voltage zener diode.

\Rightarrow BIAS ADJUSTMENT

Connect the Multimeter across R54 of Power board, when the heatsink temperature rises at $50^{\circ} \mathrm{C}$, turn off the cooling fan and adjust R31 to read 2 mV .
Set the scope sensitivity at $1 \mathrm{~V} /$ div.(CH1), and connect the GND clip to the amplifier GND (CN5) and the probe tip on the output (CN6). Adjust the generator level until the sinewave appears at full screen amplitude, No crossover distortion must be detectable: if necessary re-adjust R31. Reconnect the fan.

BANDWIDTH CHECK:

Sweep the generator frequency from 20 Hz to 20 KHz , the output level must have not detectable level changes.

SLEW RATE CHECK

Set the scope sensitivity to $10 \mathrm{~V} / \mathrm{div}$. $1 \mathrm{mS} /$ div. and set the generator to 1 KHz square wave mode. Check the output square wave rising and falling edge slopes: both must be $12 \mathrm{~V} / \mu \mathrm{S}$ or more
Δ Disconnect the Variac and re-connect the transformer primaries to the PROTECTIONS board (be careful to connect the two transformers out of phase)

Inputs Board Check

These procedures are intended for one channel at a time, repeat these operations for the other channel.
\Rightarrow SETUP.
Connect the CH 1 probe to amplifier input of the channel under test and set both at $500 \mathrm{mV} / \mathrm{div}$. $200 \mathrm{mS} /$ div.
Connect the CH 2 probe to amplifier output of the channel under test and set it at $10 \mathrm{mV} / \mathrm{div}$. $200 \mathrm{mS} / \mathrm{div}$.
Set the audio generator at 1 KHz sinus. $775 \mathrm{mV}_{\text {RMS }}$ (0 dB)
Set the LEVEL potentiometers full clockwise.
The load resistor is disconnected

CMRR ADJUSTMENT

Temporarily disconnect pin 3 from pin 1and short the pin 2 (positive input) and pin 3 (negative input) of XLR input socket.
Adjust the trimmer R10 (channel A) or R21 (channel B) to obtain the minimum output level.

GAIN ADJUSTMENT

Re-set the input signal at pin 2 (positive input) and pin 3 (negative input) short with pin 1 (GND) of XLR input socket
Set CH2 scope at $500 \mathrm{mV} / \mathrm{div}$. and connect it to the output of INPUTS
board (CN3 pin9 for channel A or CN3 pin7 for channel B).
Set the input SENSITIVITY (SW1) at 2.25 Vrms , adjust the trimmer R5

AMPLIFIER GAIN CHECK

Set CH2 scope at $50 \mathrm{~V} / \mathrm{div}$. and connect it to the amplifier output of the channel under test. By means of the SENSITIVITY switch check the output levels: at 775 mV position the output voltage must be $63 \pm 1.5 \mathrm{Vp}$ and at 2.25 V position must be $22.5 \pm 0.5 \mathrm{~V}$ p.
\Rightarrow AMPLIFIER BRIDGE MODE CHECK
Set the amplifier in BRIDGE mode (input signal to channel A), connect the CH 2 probe to the bridge output: the output voltage must be $124 \pm 3 \mathrm{~V}$.

\checkmark SIGNAL TO NOISE RATIO CHECK

Disconnect the audio generator and short the input (pin 1,2,3 of XLR socket shorted) the output signal (noise) must be less 1 mV

Advices

\checkmark Check the channels one at time to determine which is right (note: if you have a spare amplifier module that you know as right, use it)
\diamond If the other channel doesn't work properly, you can replace the DRIVER and POWER board one a time, using those of the right channel, to isolate where is the damage.
\checkmark If you have determinate that the problem is a short on a rail, you must check the output transistors. To do this you must remove before the DRIVER board to access at the POWER board
To determine which transistor devices are bad, use a soldering iron to lift one leg of each emitter pin and measure the emitter-collector resistance on each device. Unsolder and lift one leg of each base pin and check the base-collector resistance of each transistor and replace any that measure as a short.
transistors are OK, unsolder and lift one leg of each diode and check them.
Check the circuit board for open foil traces.
Use the Multimeter as Ohm-meter to check the resistors, particularly the base and emitter resistors of damaged transistor.
๑ If the input sinewave appears to be distorted during the negative cycle, you can assume that the problem is located somewhere in the circuitry of the positive low rail
If the positive cycle appears distorted, you can assume that the problem is in the circuitry of the negative low rail.
\searrow If the high rails appear distorted or are not modulating as shown in figure, then the problem probably exists somewhere in the circuitry of the respec tive (+ or -) defective high rail. Refer to the schematics.

